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Abstract

In the framework of second law of thermodynamics, we analyze a set
of fractional generalized heat equations. The second law ensures that the
heat flows from hot to cold regions, and this condition is analyzed in the
context of the Fractional Calculus.
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1. Introduction

The general one dimensional space-fractional diffusion equation

∂T

∂t
= k

∂βT

∂xβ
, 1 < β ≤ 2 (1.1)

can be interpreted as a generalization of the heat equation (β = 2)

∂T

∂t
= k

∂2T

∂x2
(1.2)

The fractional derivative operators are non-local and this property is very
important in the applications because it allows to model the dynamic of
many complex processes in the applied sciences and engineering. The space-
fractional diffusion equation (1.1) has been considered in the literature by
numerous authors, see for instance [1], [2], [4], [5], [6], [8], [9], [13]. Also,
the equation (1.1) represents a hyperbolic wave equation for β = 1 and a
parabolic diffusion equation for β = 2, such that the equation (1.1) can
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be interpreted as the interpolation between a hyperbolic and a parabolic
equation.

First of all, let us remember the well known deterministic approach to
the one-dimensional heat equation. Therefore the heat Fourier model is
based in three ideas for an one-dimensional system as a isolated bar:

• The energy that is necessary to change the temperature of a section
∆T of a bar from zero to T is proportional to ∆lT . The energy
density is proportional to the temperature

ε = KT (1.3)

with K a characteristic constant of the material.
• The energy flows from high temperature to low temperature regions,

according to the second law of thermodynamics. Also the time rate
of heat transfer through a material is proportional to the negative
gradient in the temperature and to the area through which the heat
is flowing

φ = −µDxT (1.4)
where φ is the energy flux density, µ is a constant that is character-
istic of the material and the minus sign ensures that the heat flows
from hot to cold regions. This law is experimental and its name is
Fourier Law in the case of the heat equation (the simplest case).
• The energy conservation law. In a section of the bar, ∆l, the energy

in ∆l in the instant t2 is equal to the energy in ∆l in the instant t1
plus the flux of energy that get in by the extremes x1, x2 of the ∆l
in the interval of time (t1, t2):∫

∆l
(ε(x, t2)− ε(x, t1))dx =

∫ t2

t1

(−φ(x2, t) + φ(x1, t))dt (1.5)

Then, according to the conservation law, we have in general the consti-
tutive equation

Dtε+Dxφ = 0 (1.6)
where as we indicated before ε = KT and φ = −µDxT in the classical case.
By using the relations (1.3) and (1.4) we get

DtT =
µ

K
DxxT (1.7)

How the heat flows in the medium is the key point to understand the
fractional heat equation (1.1) with 1 < β = 1 + ρ ≤ 2. The classical
diffusion equation is used for ordinary cases where a normal medium is
considered and then a simple derivative allows to model ordinary phenom-
ena. However in many cases, the processes take place in anomalous media
(organic tissues, heterogeneous materials...) with characteristics that can
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affect the evolution of the energy flux [2], [6]. For example the hetero-
geneity of the medium is a factor that can modify the velocity of the flux,
from a macroscopic and microscopic point of view, but it is natural that
the second law of thermodynamics can not be modified. For this reason
it is necessary to introduce a variation that allows us to characterize this
type of complex processes. A possible way to model this variation is by
the introduction of a fractional derivative in the energy flux density, such
that this fractional derivative characterizes the strong abnormality of the
medium through a kernel of convolution ([2], [12], [10]). For this objective
we can use a deterministic approach and we can rewrite (1.4) in a integral
form that represents a simple convolution [3]:

T (x, t) =
∫ ∞
x

φ(ξ, t)
µ

dξ + T (∞, t) = 1 ∗
(
φ(x, t)
µ

)
(1.8)

(we assume T (∞, t) = 0). Then this expression can be generalized for
different types of materials by introduction of a suitable kernel K(x) instead
of 1

T (x, t) = K(x) ∗
(
φ(x, t)
µ

)
(1.9)

Depending on the considered medium, we could consider a kernel K(x)
associated to a fractional integral Iρx (for example, we propose the kernel
K(x) = xρ−1

Γ(α) that is related to the Liouville fractional integral, because this
kernel characterizes many complex processes [2], [6], [10], [13]), where ρ is
a parameter that will depend of the thermal properties of the material, and
then we have

T (x, t) = K(x) ∗
(
φ(x, t)
µ

)
= Iρx

(
φ(x, t)
µ

)
(1.10)

that is equivalent to
φ = −µDρ

xT. (1.11)

Consequently the propagation of the temperature is governed by the equa-
tion

DtT =
µ

K
D1+ρ
x T, 0 < ρ ≤ 1 (1.12)

(If ρ = 0, here we have a hiperbolic equation.)
Also, since the heat flux φ = −µ∂T∂x in the classical case verifies the sec-

ond law of thermodynamics, the heat flux φ = −µDρ
xT of the new family of

equations (1.12) will be compatible with the second law of thermodynamics
if the following condition is satisfied ([11], [7])

Dρ
xT ·

∂T

∂x
> 0 (1.13)
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Thus this property will restrict the possible fractional operators that
can be considered in the generalized Fourier law and the initial and bound-
ary conditions of the considered problem.

When ρ = 1 the condition (1.13) is trivial. But for 0 < ρ < 1 it will be
analyzed in the next section for two examples.

2. Fractional heat equation

As it is not easy to prove the condition (1.13) in general, we will study
specific cases of the fractional heat equation, that is, we will use a specific
fractional derivative and particular initial conditions. Let be the equation

∂tT = k∂1+ρ
x T, 0 < ρ ≤ 1 (2.1)

The solutions of the Cauchy problem associated to this equation are dis-
cussed by several authors, with different fractional derivative operators [2],
[4].

2.1. With Liouville space-fractional derivative

Considering in this case x ∈ R, we take the Liouville derivative operator
that has the following expression, see for instance [12], [2]:

(LDα
x,∞f)(x) =

1
Γ(n− α)

(
− d

dx

)n ∫ ∞
x

f(ξ)dξ
(ξ − x)α−n+1

, (x ∈ R) (2.2)

for α ∈ C, <(α) > 0 and n = [<(α)] + 1 (n ∈ N), where [<(α)] means the
integral part of <(α).

In this paper, we consider 0 < ρ ≤ 1 and then

(LD1+ρ
x,∞f)(x) =

1
Γ(2− α)

d2

dx2

∫ ∞
x

f(ξ)dξ
(ξ − x)ρ

, (x ∈ R) (2.3)

So the generalized Cauchy problem in one dimension is:

DtT (x, t) = k(LD1+ρ
x,∞T )(x, t), 0 < ρ ≤ 1, t > 0, x ∈ R, k ∈ R+(2.4)

T (x, 0+) = g(x), x ∈ R (2.5)
lim

x→±∞
T (x, t) = 0, t > 0 (2.6)

This problem is solvable and its solution is obtained applying the Laplace
transform Lt with respect to t > 0

(Ltu)(x, s) =
∫ ∞

0
u(x, t)e−stdt, x ∈ R, s > 0 (2.7)
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and the Fourier transform Fx with respect to x ∈ R

(Fxu)(σ, t) =
∫ ∞
−∞

u(x, t)eixσdx, σ ∈ R, t > 0 (2.8)

and using the following known formula for the Fourier transform of the
fractional derivative [2]:

(Fx(Dβ
x,∞T ))(σ, t) = (iσ)β(FxT )(σ, t) (β > 0) (2.9)

where
(iσ)β := |σ|βe

βπi
2
sign(σ) (σ ∈ R, β > 0) (2.10)

This is a multi-valued function but the principal value will be taken.
So we obtain

(FxLtT )(σ, s) =
Fxg(σ)

s− k(iσ)1+ρ
(2.11)

and applying the inverse Laplace and Fourier transform

(L−1
t u)(x, t) =

1
2πi

∫ γ+i∞

γ−i∞
estu(x, s)ds, x ∈ R, s > 0 (2.12)

(γ = <(s) > abscisa de convergencia)

(F−1
x u)(x, t) =

1
2π

∫ ∞
−∞

e−iσxu(σ, t)dσ, σ ∈ R, t > 0 (2.13)

the solution of this problem is (see [2] pp. 385)

T (x, t) =
1

2πi

∫ γ+i∞

γ−i∞
estds

1
2π

∫ ∞
−∞

(Fxg)(σ)
s− k(iσ)1+ρ

e−iσxdσ (γ ∈ R)

(2.14)
That is equivalent to

T (x, t) =
1

2π

∫ ∞
−∞

ek(iσ)1+ρt(Fxg)(σ)e−iσxdσ (2.15)

provided that the integrals in the right-hand sides of (2.14) and (2.15) exist.

Also in the case that g is a function in the space

S̄ = {ϕ ∈ C∞(R) : lim
|x|→∞

ϕ(m)(x) = 0,m = 0, 1, 2...} (2.16)

then we can represent the exponential function as a power series, such that
the uniform convergence allows to introduce the integral in the series, and
finally the solution has the following form:

T (x, t) =
∞∑
j=0

ktj

j!
(LD(1+ρ)j

x,∞ g)(x) (2.17)
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with the condition that this series converges for all x ∈ R and t > 0,
and considering that this type of functions g ∈ S̄ are continuous and the
continuous functions verifies the indices law of the Liouville derivative.

Let us check if this solution verifies the condition (1.13). We need
to compute the derivatives of the solution and these derivatives can be
introduced into the series of the solution (2.17) because we have supposed
this series converges:

(LDρ
x,∞T )(x, t) =

∞∑
j=0

ktj

j!
(LD(1+ρ)j+ρ

x,∞ g)(x) (2.18)

∂T

∂x
(x, t) =

∞∑
j=0

ktj

j!
(LD(1+ρ)j+1

x,∞ g)(x) (2.19)

2.1.1. Particular solution for negative exponential initial condition: At-
tending to this last expression, it is not possible to obtain restrictions of ρ
in order to verify the condition (1.13) for all initial condition g. For this
reason we will study the following particular case:

T (x, 0+) = e−λx, λ > 0, x ∈ R (2.20)

Although this function does not belong to the space S̄, it has the following
property:

LDα
x,∞e

−λx = λαe−λx (2.21)

and then we can obtain the solution to the problem (2.4-2.5-2.6) easily as:

T (x, t) = ekλ
1+ρt−λx (2.22)

Consequently we have

(LDρ
x,∞T )(x, t) = λρekλ

1+ρt−λx (2.23)
∂T

∂x
(x, t) = −λekλ1+ρt−λx (2.24)

(LDρ
x,∞T )(x, t) · ∂T

∂x
(x, t) = −λ1+ρe2(kλ1+ρt−λx) < 0 (2.25)

It is clear that in this case the condition (1.13) is not verified for all value
of ρ.

2.1.2. Particular solution for potential initial condition: If we take the
initial condition

T (x, 0+) = xγ−1, 0 < γ < 1, x ∈ R (2.26)
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choosing γ such that the following property is verified:

LDα
x,∞x

γ−1 =
Γ(1 + α− γ)

Γ(1− γ)
xγ−α−1, <(α− [<(α)] + γ) < 1 (2.27)

for all value α = (1+ρ)j, α = (1+ρ)j+ρ and α = (1+ρ)j+1, j = 0, 1, 2, 3, ...

As this function belongs to the space S̄, the solution (2.17) has the form

T (x, t) =
∞∑
j=0

ktj

j!
Γ(1 + (1 + ρ)j − γ)

Γ(1− γ)
xγ−(1+ρ)j−1 (2.28)

Then

(LDρ
x,∞T )(x, t) =

∞∑
j=0

ktj

j!
Γ(1 + (1 + ρ)j + ρ− γ)

Γ(1− γ)
xγ−(1+ρ)j−ρ−1(2.29)

∂T

∂x
(x, t) =

∞∑
j=0

ktj

j!
Γ(2 + (1 + ρ)j − γ)

Γ(1− γ)
xγ−(1+ρ)j−2 (2.30)

Now, the condition (1.13) is reduced to

(LDρ
x,∞T )(x, t) · ∂T

∂x
(x, t) =

∞∑
j=1

cj

(
ktj

j!

)2

x2γ−2−j(ρ+1) (2.31)

which is always positive for ρ = 1, but it is not possible to assure its
positivity for 0 < ρ < 1 in x ∈ R because negative values of x with real
potentials appear in the result.

3. Conclusions

In this paper we give a motivation to introduce a space fractional deriv-
ative with parameter β in the heat equation. Such fractional generalization
allows to model the anomalous properties of the medium, getting a general-
ization of the Fourier law. Then we study the second law of thermodynam-
ics in this new fractional model and we introduce two examples where we
can see that the use of the mentioned characterization is not trivial: we can
find particular cases that do not verify the second law of thermodynamics
and cases where it is not possible to assure that whether this law is verified.
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